Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Yan Li, Yong Ren, Guang-Ao Yu* and Sheng-Hua Liu

Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
yuguang@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.043$
$w R$ factor $=0.111$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Chloro[(di-tert-butylphosphino)cobalto-cenium- κ P]gold(I) hexafluorophosphate

In the crystal structure of the title compound, $[\mathrm{AuCl}\{\mathrm{Co}-$ $\left.\left.\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{P}^{t} \mathrm{Bu}_{2}\right)\right\}\right] \mathrm{PF}_{6}$ or $\left[\mathrm{AuCo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{P}\right) \mathrm{Cl}\right] \mathrm{PF}_{6}$, hexafluorophosphate is an uncoordinated anion. The structure contains $\eta^{5}-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds.

Comment

The synthesis and reactivity of transition metal complexes with ferrocene-bridged bis(tertiary phosphine) ligands such as $1,1^{\prime}$-bis(diphenylphosphino)ferrocene (dppf) have been a topic of interest in the last few years, mainly because of the catalytic properties displayed by some of them (Cullen et al., 1982). Moreover, the antitumor activity of bis(diphenylphosphines) and their bis(gold(I)) complexes has been of recent interest (Mirabelli et al., 1987). We have studied the coordination of cobaltocenylphosphine as a bridging or chelating ligand in two-coordinate gold(I) complexes.

(I)

In the title compound, (I), the $\mathrm{Co} 1-\mathrm{C}$ bond distances for the $\eta^{5}-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ ring range from 2.001 (9) to 2.066 (7) \AA, similar to the $\eta^{5}-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ ring which has a range of $2.000(9)-$ 2.062 (10) \AA. The $\mathrm{Co} 1 \cdots C g 1$ and $\mathrm{Co} 1 \cdots C g 2$ distances $(C g 1$ and $C g 2$ are the centroids of the $\eta^{5}-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ and $\eta^{5}-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ rings, respectively) are 1.643 (5) and 1.638 (4) \AA, respectively. The cyclopentadienyl $\mathrm{C}-\mathrm{C}$ bond distances for the $\eta^{5}-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\eta^{5}-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ rings are in the ranges $1.370(15)-1.416(18) \AA$ and $1.382(15)-1.434$ (10) \AA, respectively. The P1-C10 bond distance is significantly shorter than the $\mathrm{P} 1-\mathrm{C} 11$ and $\mathrm{P} 1-\mathrm{C} 15$ distances (Table 1).

The dihedral angle between the two cyclopentadienyl rings is $9.2(7)^{\circ}$. Analysis of the hydrogen bonding in the title compound shows weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions (Fig. 2 and Table 2).

Experimental

The title compound was synthesized following a standard procedure (Al-sa'ady et al., 1985). Crystals suitable for data collection were obtained by slow diffusion of hexane into a dichloromethane solution at room temperature.

Crystal data

$\left[\mathrm{AuCo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{P}\right) \mathrm{Cl}\right] \mathrm{PF}_{6}$
$M_{r}=710.68$
Triclinic, $P \overline{1}$
$a=8.4139(12) \AA$
$b=9.3680(13) \AA$
$c=15.031(2) \AA$
$\alpha=100.384(2)^{\circ}$
$\beta=99.487(2)^{\circ}$
$\gamma=102.035(2)^{\circ}$
$V=1114.3(3) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=2.118 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 5047 reflections
$\theta=2.2-25.9^{\circ}$
$\mu=7.64 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, yellow
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
8158 measured reflections 4303 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.111$
$S=1.12$
4303 reflections
268 parameters
H -atom parameters constrained

3888 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.085$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 10$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0497 P)^{2} \\
&+2.53 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.98 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.25 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The constituent ions of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probablity level.

Figure 2
The packing of (I), showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds as dashed lines. H atoms not involved in these hydrogen bonds have been omitted.

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 20572029), New Century Excellent Talents in Universities (NCET-04-0743), the Program for Excellent Research Groups of Hubei Province (No. 2004ABC002) and the Natural Science Foundation of Hubei Province (No. 2005ABA038).

References

Al-sa’ady, A. K., McAuliffe, C. A., Parish, R. V. \& Sandbank, J. A. (1985). Inorg. Synth. 23, 191-194.
Bruker(2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Cullen, W. R., Woollins, J. D. (1982). Coord. Chem. Rev. 39, 1-30.
Mirabelli, C. K., Hill, D. T., Faucette, L. F., McCabe, F. L., Girard, G. R., Bryan, D. B., Sutton, B. M., Bartus, J. O., Crooke, S. T. \& Johnson, R. K. (1987). J. Med. Chem. 30, 2181-2190.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

